Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507338

RESUMO

OBJECTIVE: To define the relationship between chronic chikungunya post-viral arthritis disease severity, cytokine response and T cell subsets in order to identify potential targets for therapy. METHODS: Participants with chikungunya arthritis were recruited from Colombia from 2019-2021. Arthritis disease severity was quantified using the Disease Activity Score-28 and an Arthritis-Flare Questionnaire adapted for chikungunya arthritis. Plasma cytokine concentrations (interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ and tumor necrosis factor (TNF)) were measured using a Meso Scale Diagnostics assay. Peripheral blood T cell subsets were measured using flow cytometry. RESULTS: Among participants with chikungunya arthritis (N = 158), IL-2 levels and frequency of regulatory T cells (Tregs) were low. Increased arthritis disease activity was associated with higher levels of inflammatory cytokines (IL-6, TNF and CRP) and immunoregulatory cytokine IL-10 (p<0.05). Increased arthritis flare activity was associated with higher Treg frequencies (p<0.05) without affecting T effector (Teff) frequencies, Treg/Teff ratios and Treg subsets. Finally, elevated levels of IL-2 were correlated with increased Treg frequency, percent Tregs out of CD4+ T cells, and Treg subsets expressing immunosuppressive markers, while also correlating with an increased percent Teff out of live lymphocytes (p<0.05). CONCLUSION: Chikungunya arthritis is characterized by increased inflammatory cytokines and deficient IL-2 and Treg responses. Greater levels of IL-2 were associated with improved Treg numbers and immunosuppressive markers. Future research may consider targeting these pathways for therapy.


Assuntos
Artrite Infecciosa , Febre de Chikungunya , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Estudos Transversais , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Febre de Chikungunya/complicações , Linfócitos T Reguladores/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunossupressores
2.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397857

RESUMO

Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.

3.
Curr Cardiol Rev ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38275069

RESUMO

The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.

4.
Curr Med Chem ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605403

RESUMO

Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.

5.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631036

RESUMO

The search for new drugs with the potential to ensure therapeutic success in the treatment of cardiovascular diseases has become an essential pathway to follow for health organizations and committees around the world. In June 2021, the World Health Organization listed cardiovascular diseases as one of the main causes of death worldwide, representing 32% of them. The most common is coronary artery disease, which causes the death of cardiomyocytes, the cells responsible for cardiac contractility, through ischemia and subsequent reperfusion, which leads to heart failure in the medium and short term. Metformin is one of the most-used drugs for the control of diabetes, which has shown effects beyond the control of hyperglycemia. Some of these effects are mediated by the regulation of cellular energy metabolism, inhibiting apoptosis, reduction of cell death through regulation of autophagy and reduction of mitochondrial dysfunction with further reduction of oxidative stress. This suggests that metformin may attenuate left ventricular dysfunction induced by myocardial ischemia; preclinical and clinical trials have shown promising results, particularly in the setting of acute myocardial infarction. This is a review of the molecular and pharmacological mechanisms of the cardioprotective effects of metformin during myocardial ischemia-reperfusion injury.

6.
Curr Top Med Chem ; 23(26): 2427-2435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642000

RESUMO

Cardiac fibrosis is known as the expansion of the cardiac interstitium through excessive deposition of extracellular matrix proteins; this process is performed by a multifunctional cell known as the cardiac fibroblast. After the myocardial injury, these cells are activated as a repair program, increase, and switch to a contractile phenotype, which is evidenced by an increase in alpha- smooth muscle actin. Likewise, there is an increase in type I and III collagen, which are considered profibrotic biomarkers. It is believed that one of the proteins involved in cardiac remodeling is METTL3, which is the enzyme responsible for N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic modification of eukaryotic mRNA. This review focuses on recent studies in which the possible role of METTL3 in the progression of fibrosis has been demonstrated, mainly in cardiac fibrogenesis.


Assuntos
Colágeno , Epigênese Genética , Humanos , Metilação , Fibrose , Colágeno/metabolismo , Fibroblastos , Metiltransferases/metabolismo
7.
Curr Protein Pept Sci ; 24(1): 89-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36453502

RESUMO

The new coronavirus currently named SARS-CoV-2 was announced by the World Health Organization as the virus causing the COVID-19 pandemic. The pathogenesis of SARS-CoV-2 initiates upon contact of a structural spike protein with the angiotensin II-converting enzyme receptor, leading to the induction of inflammatory mechanisms and progression to severe disease in some cases. Currently, studies have emerged linking COVID-19 with angiotensin-(1-7), demonstrating the potential of angiotensin-(1-7)/Mas Receptor axis induction to control disease severity due to its antiinflammatory, vasodilator, antioxidant, antiproliferative, anticoagulant, antiangiogenic and fibrosis inhibitory effects. The renin angiotensin-system peptide Angiotensin-(1-7) shows a high therapeutic potential for COVID-19 mainly because of its ability to counteract the adverse effects caused in various organs due to angiotensin II-converting enzyme blockade. In light of these factors, the use of convalescent plasma conjugated therapy and Ang (1-7) agonists for the treatment of COVID-19 patients could be recommended. The differential expression of ACE2 and the varied response to SARSCoV- 2 are thought to be connected. According to several investigations, ACE2 antibodies and pharmacological inhibitors might be used to prevent viral entry. Given its capacity to eliminate the virus while ensuring lung and cardiovascular protection by regulating the inflammatory response, angiotensin-( 1-7) is expected to be a safe choice. However, more clinical evidence is required to clarify the therapeutic usage of this peptide. The aim of this review article is to present an update of scientific data and clinical trials on the therapeutic potential of angiotensin-(1-7) in patients with COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Angiotensina II/uso terapêutico , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Pandemias , Tratamento Farmacológico da COVID-19 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Soroterapia para COVID-19 , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina
8.
Curr Pediatr Rev ; 18(2): 121-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34872479

RESUMO

Pediatric coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) have been recognized in multiple countries globally. In this review, we provide recent insights into SARS-CoV-2 infection in children from epidemiological, clinical, and laboratory perspectives, including reports on the disease course and therapy. We highlight key features of SARS-CoV-2 infection in children, the relationship between MIS-C and Kawasaki disease, and summarize treatment guidelines for COVID-19 in children from institutional protocols from Colombia, case reports, recommendations based on expert consensus, and official statements from organizations such as the World Health Organization (WHO), United States Center for Disease Control (CDC), Colombian Association of Infectious Diseases, and the Colombian Society of Pediatrics. Finally, we discuss gaps in research with suggestions for future research on the pathogenesis underlying pediatric COVID-19.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , COVID-19/complicações , Criança , Humanos , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/epidemiologia , Síndrome de Linfonodos Mucocutâneos/terapia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/terapia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...